A Hormetic Approach to the Value-Loading Problem: Preventing the Paperclip Apocalypse?

Nathan I. N. Henry, Mangor Pedersen,Matt Williams, Jamin L. B. Martin,Liesje Donkin

CoRR(2024)

引用 0|浏览2
暂无评分
摘要
The value-loading problem is a significant challenge for researchers aiming to create artificial intelligence (AI) systems that align with human values and preferences. This problem requires a method to define and regulate safe and optimal limits of AI behaviors. In this work, we propose HALO (Hormetic ALignment via Opponent processes), a regulatory paradigm that uses hormetic analysis to regulate the behavioral patterns of AI. Behavioral hormesis is a phenomenon where low frequencies of a behavior have beneficial effects, while high frequencies are harmful. By modeling behaviors as allostatic opponent processes, we can use either Behavioral Frequency Response Analysis (BFRA) or Behavioral Count Response Analysis (BCRA) to quantify the hormetic limits of repeatable behaviors. We demonstrate how HALO can solve the 'paperclip maximizer' scenario, a thought experiment where an unregulated AI tasked with making paperclips could end up converting all matter in the universe into paperclips. Our approach may be used to help create an evolving database of 'values' based on the hedonic calculus of repeatable behaviors with decreasing marginal utility. This positions HALO as a promising solution for the value-loading problem, which involves embedding human-aligned values into an AI system, and the weak-to-strong generalization problem, which explores whether weak models can supervise stronger models as they become more intelligent. Hence, HALO opens several research avenues that may lead to the development of a computational value system that allows an AI algorithm to learn whether the decisions it makes are right or wrong.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要