Lipid bilayer membrane permeability mechanism of the K-Ras(G12D)-inhibitory bicyclic peptide KS-58 elucidated by molecular dynamics simulations.

Bioorganic & medicinal chemistry letters(2024)

引用 0|浏览0
暂无评分
摘要
Peptides are mid-size molecules (700-2000 g/mol) and have attracted particular interest as therapeutic modalities as they are superior in controlling protein-protein interactions, a process that is a typical drug target category, compared with small molecules (<500 g/mol). In 2020, we identified KS-58 (1333 g/mol) as a K-Ras(G12D)-inhibitory bicyclic peptide and suggested its cell membrane permeability. However, the membrane permeability mechanism had not been elucidated. In this study, we aim to clarify the mechanism by molecular dynamics (MD) simulations. Initially, we simulated the molecular conformations of KS-58 in water (a polar solvent) and in chloroform (a non-polar solvent). The identified stable conformations were significantly different in each solvent. KS-58 behaves as a chameleon-like molecule as it alters its polar surface area (PSA) depending on the solvent environment. It was also discovered that orientation of Asp's side chain is a critical energy barrier for KS-58 altering its conformation from hydrophilic to lipophilic. Taking these properties into consideration, we simulated its lipid bilayer membrane permeability. KS-58 shifted toward the inside of the lipid bilayer membrane with altering its conformations to lipophilic. When the simulation condition was set in deionized form of that carboxy group of Asp, KS-58 traveled deeper inside the cell membrane. PSA and the depth of the membrane penetration correlated. In vitro data suggested that cell membrane permeability of KS-58 is improved in weakly acidic conditions leading to partial deionization of the carboxy group. Our data provide an example of the molecular properties of mid-size peptides with membrane accessibility and propose an effective metadynamics approach to elucidate such molecular mechanisms by MD simulations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要