Multisignals Sensing Platform for Highly Sensitive, Accurate, and Rapid Detection of p-Aminophenol Based on Adsorption and Oxidation Effects Induced by Defective NH2-Ag-nMOFs

ANALYTICAL CHEMISTRY(2024)

引用 0|浏览1
暂无评分
摘要
Labile toxic pollutants detection remains a challenge due to the problem that a single method is prone to producing false-negative/-positive signals. The construction of a multisignal sensing platform with the advantages of different strategies is an effective way to solve this problem. Herein, a novel resonant light scattering (RLS), fluorescent and rapid visual multisignals sensing strategy for p-aminophenol (p-AP) detection was designed based on the adsorption and oxidation effects of defective amino-functionalized Ag-based nano metal-organic frameworks (NH2-Ag-nMOFs). In this reaction process, NH2-Ag-nMOFs with incomplete coordination oxidize H2O2 to produce singlet oxygen (O-1(2)) which rapidly oxidizes p-AP, leading to the reduction of Ag+ to Ag-0, thereby disrupting the structure of NH2-Ag-nMOFs and resulting in fluorescence quenching of NH2-Ag-nMOFs. Synchronously, owing to Ag-0 aggregation and p-AP oxidation, the color of the system changed from colorless to purplish-red and pale brown within 20 s. The assay has realized the rapid naked-eye detection of 5 mu M p-AP rapidly. Additionally, thanks to the intermolecular hydrogen bonding, NH2-Ag-nMOFs-p-AP aggregates formed, which enhanced the RLS signal. With the RLS signal, the designed multisignals sensing platform can analyze p-AP at a concentration as low as 11 nM and yield a wider dynamic response range than any single signal strategy reported before, which can quickly meet the measurement requirement of different actual samples. Overall, the proposed strategy without assembling various signal indicators presented an accurate, rapid, cost-effective, and sensitive multisignals sensing platform for p-AP analysis and has great prospects in labile toxic pollutants monitoring.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要