Theoretical Study of the NO Reduction Mechanism on Biochar Surfaces Modified by Li and Na Single Adsorption and OH Co-Adsorption

Qiong Su, Fang Ren,Mengmeng Lu,Jinqin Zhao, Xingchen Zhu, Tao Shen, Yan Shen,Yanbin Wang,Junxi Liang

MOLECULES(2024)

引用 0|浏览3
暂无评分
摘要
Theoretical and experimental investigations have shown that biochar, following KOH activation, enhances the efficiency of NO removal. Similarly, NaOH activation also improves NO removal efficiency, although the underlying mechanism remains unclear. In this study, zigzag configurations were employed as biochar models. Density functional theory (DFT) was utilized to examine how Li and Na single adsorption and OH co-adsorption affect the reaction pathways of NO reduction on the biochar surface. The rate constants for all reaction-determining steps (RDSs) within a temperature range of 200 to 1000 K were calculated using conventional transition state theory (TST). The results indicate a decrease in the activation energy for NO reduction reactions on biochar when activated by Li and Na adsorption, thus highlighting their beneficial role in NO reduction. Compared to the case with Na activation, Li-activated biochar exhibited superior performance in terms of the NO elimination rate. Furthermore, upon the adsorption of the OH functional group onto the Li-decorated and Na-decorated biochar models (LiOH-decorated and NaOH-decorated chars), the RDS energy barriers were higher than those of Li and Na single adsorption but easily overcome, suggesting effective NO reduction. In conclusion, Li-decorated biochar showed the highest reactivity due to its low RDS barrier and exothermic reaction on the surface.
更多
查看译文
关键词
biochar,NO reduction,density functional theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要