Telomere Length, Mitochondrial DNA, and Micronucleus Yield in Response to Oxidative Stress in Peripheral Blood Mononuclear Cells

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES(2024)

引用 0|浏览1
暂无评分
摘要
Telomere shortening, chromosomal damage, and mitochondrial dysfunction are major initiators of cell aging and biomarkers of many diseases. However, the underlying correlations between nuclear and mitochondrial DNA alterations remain unclear. We investigated the relationship between telomere length (TL) and micronucleus (MN) and their association with mitochondrial DNA copy number (mtDNAcn) in peripheral blood mononuclear cells (PBMCs) in response to 100 mu M and 200 mu M of hydrogen peroxide (H2O2) at 44, 72, and 96 h. Significant TL shortening was observed after both doses of H2O2 and at all times (all p < 0.05). A concomitant increase in MN was found at 72 h (p < 0.01) and persisted at 96 h (p < 0.01). An increase in mtDNAcn (p = 0.04) at 200 M of H2O2 was also found. In PBMCs treated with 200 mu M H2O2, a significant inverse correlation was found between TL and MN (r = -0.76, p = 0.03), and mtDNA content was directly correlated with TL (r = 0.6, p = 0.04) and inversely related to MN (r = -0.78, p = 0.02). Telomere shortening is the main triggering mechanism of chromosomal damage in stimulated T lymphocytes under oxidative stress. The significant correlations between nuclear DNA damage and mtDNAcn support the notion of a telomere-mitochondria axis that might influence age-associated pathologies and be a target for the development of relevant anti-aging drugs.
更多
查看译文
关键词
telomere length,chromosomal damage,micronucleus,mitochondrial DNA copy number,hydrogen peroxide,oxidative stress,peripheral blood mononuclear cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要