Significantly Improved Cold Preservation of Rat Hind Limb Vascularized Composite Allografts Using the New PrC-210 Free Radical Scavenger.

International Journal of Molecular Sciences(2024)

引用 0|浏览1
暂无评分
摘要
Vascularized composite allotransplantation (VCA) represents a promising reconstructive solution primarily conducted to improve quality of life. However, tissue damage caused by cold-ischemia (CI) storage prior to transplant represents a major factor limiting widespread application. This study investigates the addition of the novel free radical scavenger PrC-210 to UW Organ Preservation Solution (UW Solution) to suppress CI-induced skeletal muscle injury in a rat hind limb amputation model. Lewis rats received systemic perfusion of UW solution +/- PrC-210 (0 mM control, 10 mM, 20 mM, 30 mM, or 40 mM), followed by bilateral transfemoral amputation. Limbs were stored in 40 mL of the same perfusate at 4 °C for 48 h. Muscle punch biopsies were taken at set times over the 48 h cold-storage period and analyzed for caspase-3,7 activity, cytochrome C levels, and qualitative histology. A single 15 s perfusion of PrC-210-containing UW Solution conferred a dose-dependent reduction in CI-induced muscle cell death over 48 h. In the presence of PrC-210, muscle cell mitochondrial cytochrome C release was equivalent to 0 h controls, with profound reductions in the caspase-3,7 apoptotic marker that correlated with limb histology. PrC-210 conferred complete prevention of ROS-induced mitochondrial lysis in vitro, as measured by cytochrome C release. We conclude that the addition of 30 mM PrC210 to UW Solution conferred the most consistent reduction in CI limb damage, and it warrants further investigation for clinical application in the VCA setting.
更多
查看译文
关键词
reactive oxygen species,cold-ischemia,ischemia-reperfusion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要