Detecting non-thermal emission in a solar microflare using nested sampling

arxiv(2024)

引用 0|浏览6
暂无评分
摘要
Microflares are energetically smaller versions of solar flares, demonstrating the same processes of plasma heating and particle acceleration. However, it remains unclear down to what energy scales this impulsive energy release continues, which has implications for how the solar atmosphere is heated. The heating and particle acceleration in microflares can be studied through their X-ray emission, finding predominantly thermal emission at lower energies; however, at higher energies it can be difficult to distinguish whether the emission is due to hotter plasma and/or accelerated elections. We present the first application of nested sampling to solar flare X-ray spectra, an approach which provides a quantitative degree of confidence for one model over another. We analyse NuSTAR X-ray observations of a small active region microflare (A0.02 GOES/XRS class equivalent) that occurred on 2021 November 17, with a new Python package for spectral fitting, sunkit-spex, to compute the parameter posterior distributions and the evidence of different models representing the higher energy emission as due to thermal or non-thermal sources. Calculating the Bayes factor, we show there is significantly stronger evidence for the higher energy microflare emission to be produced by non-thermal emission from flare accelerated electrons than by an additional hot thermal source. Qualitative confirmation of this non-thermal source is provided by the lack of hotter (10 MK) emission in SDO/AIA's EUV data. The nested sampling approach used in this paper has provided clear support for non-thermal emission at the level of 3x10^24 erg s^-1 in this tiny microflare.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要