Economical quasi-Newton unitary optimization of electronic orbitals

PHYSICAL CHEMISTRY CHEMICAL PHYSICS(2024)

引用 0|浏览4
暂无评分
摘要
We present an efficient quasi-Newton orbital solver optimized to reduce the number of gradient evaluations and other computational steps of comparable cost. The solver optimizes orthogonal orbitals by sequences of unitary rotations generated by the (preconditioned) limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm equipped with trust-region step restriction. The low-rank structure of the L-BFGS inverse Hessian is exploited when solving the trust-region problem. The efficiency of the proposed "Quasi-Newton Unitary Optimization with Trust-Region" (QUOTR) solver is compared to that of the standard Roothaan-Hall approach accelerated by the Direct Inversion of Iterative Subspace (DIIS), and other exact and approximate Newton solvers for mean-field (Hartree-Fock and Kohn-Sham) problems. State-of-the-art quasi-Newton unitary optimizer with trust-region (QUOTR) is nearly as efficient as the reference method for simple cases and is more robust for complex cases such as proteins with zero HOMO-LUMO gap in semilocal Kohn-Sham DFT.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要