Dehydration of alcohols catalyzed by copper(II) sulfate: type II dyotropic reactions and stepwise mechanisms

ORGANIC & BIOMOLECULAR CHEMISTRY(2024)

引用 0|浏览1
暂无评分
摘要
Dehydration of alcohols in the presence of copper(ii) sulfate has been analyzed computationally. Density functional theory (DFT) calculations on selected alcohols indicate that this reaction can take place via two possible mechanisms: (a) concerted - although asynchronous - type II dyotropic reactions, or (b) stepwise E1-like processes, in which cleavage of the C-O bond occurs in the first step, followed by syn proton elimination. Our calculations show the relationship between the initial alcohol structure and the preferred mechanism, which is a type II dyotropic reaction for primary alcohols, whereas a stepwise process is the favored one when stable carbocation intermediates are energetically accessible. The dehydration of dehydrolinalool (2,7-dimethyl-6-en-1-yn-3-ol, DHL) to yield different alkenes of interest in the fragrance industry is discussed as a case study of its regiochemistry.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要