Long term dynamics around the Didymos-Dimorphos binary asteroid of boulders ejected after the DART impact

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
In 2022 the DART mission spacecraft impacted the asteroid Dimorphos, the secondary body of the binary Didymos system, ejecting a large number of dust particles, rocks and boulders. The ESA Hera mission will reach the system in 2026 for post–impact studies and possible detection of orbiting fragments. We investigate the long term dynamics of the large boulders ejected by DART to test if any of these objects survive in orbit until the arrival of the Hera mission. To model the dynamics of the boulders we use a numerical model which includes the gravity of non-spherical Didymos and Dimorphos, the solar gravity and the radiation pressure. The SPICE kernels are used to define the correct reference frame for the integration. The dynamics of the boulders is highly chaotic and 1 quasi–stable orbits. These orbits are characterised by wide oscillations in eccentricity in antiphase with those in inclination (including spin flips), a mechanism similar to the Kozai one. This behaviour may protect these bodies from close encounters with both asteroids. We also compute the distribution on the surfaces of the asteroids of sesquinary impacts which may influence the dust emission, after the initial DART impact, and the surface composition of the asteroids. The probability of observing boulders by the mission Hera is small but not negligible and an almost constant flux of escaping boulders is expected in the coming years since their lifetime after the DART impact covers a large time interval. Most of re–impacts on Dimorphos occur in the hemisphere opposite to the impact site, preferentially close to the equatorial plane.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要