Insights into the crystal structure investigation and virtual screening approach of quinoxaline derivatives as potent against c-Jun N-terminal kinases 1

Journal of biomolecular structure & dynamics(2024)

引用 0|浏览2
暂无评分
摘要
Quinoxaline derivatives are an important class of heterocyclic compounds in which N replaces one or more carbon atoms of the naphthalene ring and exhibit a wide spectrum of biological activities and therapeutic applications. As a result, we were encouraged to explore a new synthetic approach to quinoxaline derivatives. In this work, we synthesized two new derivatives namely, ethyl 4-(2-ethoxy-2-oxoethyl)-3-oxo-3,4-dihydroquinoxaline-2-carboxylate (2) and 3-oxo-3,4-dihydroquinoxaline-2-carbohydrazide (3) respectively. Their structures were confirmed by single-crystal X-ray analysis. Hirshfeld surface (HS) analysis is performed to understand the nature and magnitude of intermolecular interactions in the crystal packing. Density functional theory using the wb97xd/def2-TZVP method was chosen to explore their reactivity, electronic stability and optical properties. Charge transfer (CT) and orbital energies were analyzed via natural population analysis (NPA), and frontier molecular orbital (FMO) theory. The calculated excellent static hyperpolarizability (beta o) indicates nonlinear optical (NLO) properties for 2 and 3. Both compounds show potent activity against c-Jun N-terminal kinases 1 (JNK 1) based on structural activity relationship studies, further subjected to molecular docking, molecular dynamics and ADMET analysis to understand their potential as drug candidates.Communicated by Ramaswamy H. Sarma
更多
查看译文
关键词
quinoxaline,crystal structure,DFT study,ADMET,molecular docking and dynamics simulations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要