Unpacking the navigation toolbox: insights from comparative cognition

PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES(2024)

引用 0|浏览2
暂无评分
摘要
The study of navigation is informed by ethological data from many species, laboratory investigation at behavioural and neurobiological levels, and computational modelling. However, the data are often species-specific, making it challenging to develop general models of how biology supports behaviour. Wiener et al. outlined a framework for organizing the results across taxa, called the 'navigation toolbox' (Wiener et al. In Animal thinking: contemporary issues in comparative cognition (eds R Menzel, J Fischer), pp. 51-76). This framework proposes that spatial cognition is a hierarchical process in which sensory inputs at the lowest level are successively combined into ever-more complex representations, culminating in a metric or quasi-metric internal model of the world (cognitive map). Some animals, notably humans, also use symbolic representations to produce an external representation, such as a verbal description, signpost or map that allows communication of spatial information or instructions between individuals. Recently, new discoveries have extended our understanding of how spatial representations are constructed, highlighting that the hierarchical relationships are bidirectional, with higher levels feeding back to influence lower levels. In the light of these new developments, we revisit the navigation toolbox, elaborate it and incorporate new findings. The toolbox provides a common framework within which the results from different taxa can be described and compared, yielding a more detailed, mechanistic and generalized understanding of navigation.
更多
查看译文
关键词
navigation,spatial cognition,cognitive map,vector,route,wayfinding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要