Astrocyte Regulation of Cerebral Blood Flow in Health and Disease.

Cold Spring Harbor perspectives in biology(2024)

引用 0|浏览5
暂无评分
摘要
Astrocytes play an important role in controlling microvascular diameter and regulating local cerebral blood flow (CBF) in several physiological and pathological scenarios. Neurotransmitters released from active neurons evoke Ca2+ increases in astrocytes, leading to the release of vasoactive metabolites of arachidonic acid (AA) from astrocyte endfeet. Synthesis of prostaglandin E2 (PGE2) and epoxyeicosatrienoic acids (EETs) dilate blood vessels while 20-hydroxyeicosatetraenoic acid (20-HETE) constricts vessels. The release of K+ from astrocyte endfeet also contributes to vasodilation or constriction in a concentration-dependent manner. Whether astrocytes exert a vasodilation or vasoconstriction depends on the local microenvironment, including the metabolic status, the concentration of Ca2+ reached in the endfoot, and the resting vascular tone. Astrocytes also contribute to the generation of steady-state vascular tone. Tonic release of both 20-HETE and ATP from astrocytes constricts vascular smooth muscle cells, generating vessel tone, whereas tone-dependent elevations in endfoot Ca2+ produce tonic prostaglandin dilators to limit the degree of constriction. Under pathological conditions, including Alzheimer's disease, epilepsy, stroke, and diabetes, disruption of normal astrocyte physiology can compromise the regulation of blood flow, with negative consequences for neurological function.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要