Shift in excitation-inhibition balance underlies perceptual learning of temporal discrimination

Rannie Xu,Edward G. Walsh, Takeo Watanabe, Yuka Sasaki

NEUROPSYCHOLOGIA(2024)

引用 0|浏览0
暂无评分
摘要
Temporal perceptual learning (TPL) constitutes a unique and profound demonstration of neural plasticity within the brain. Our understanding for the neurometabolic changes associated with TPL on the other hand has been limited in part by the use of traditional fMRI approaches. Since plasticity in the visual cortex has been shown to underlie perceptual learning of visual information, we tested the hypothesis that TPL of an auditory interval involves a similar change in plasticity of the auditory pathway and if so, whether these changes take place in a lower-order sensory-specific brain area such as the primary auditory cortex (A1), or a higher-order modalityindependent brain area such as the inferior parietal cortex (IPC). This distinction will inform us of the mechanisms underlying perceptual learning as well as the locus of change as it relates to TPL. In the present study, we took advantage of a new technique: proton magnetic resonance spectroscopy (MRS) in combination with psychophysical measures to provide the first evidence of changes in neurometabolic processing following 5 days of temporal discrimination training. We measured the (E)xcitation-to-(I)nhibition ratio as an index of learning in the right IPC and left A1 while participants learned an auditory two-tone discrimination task. During the first day of training, we found a significant task-related increase in functional E/I ratio within the IPC. While the A1 exhibited the opposite pattern of neurochemical activity, this relationship did not reach statistical significance. After timing performance has reached a plateau, there were no further changes to functional E/I. These findings support the hypothesis that improvements in temporal discrimination relies on neuroplastic changes in the IPC, but it is possible that both areas work synergistically to acquire a temporal interval.
更多
查看译文
关键词
Time perception,Learning,Neuroplasticity,MRS
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要