All-in-One Self-Powered Microneedle Device for Accelerating Infected Diabetic Wound Repair

ADVANCED HEALTHCARE MATERIALS(2024)

引用 0|浏览0
暂无评分
摘要
Diabetic wound healing remains a significant clinical challenge due to the complex microenvironment and attenuated endogenous electric field. Herein, a novel all-in-one self-powered microneedle device (termed TZ@mMN-TENG) is developed by combining the multifunctional microneedle carried tannin@ZnO microparticles (TZ@mMN) with the self-powered triboelectric nanogenerator (TENG). In addition to the delivery of tannin and Zn2+, TZ@mMN also effectively conducts electrical stimulation (ES) to infected diabetic wounds. As a self-powered device, the TENG can convert biomechanical motion into exogenous ES to accelerate the infected diabetic wound healing. In vitro experiment demonstrated that TZ@mMN shows excellent conductive, high antioxidant ability, and effective antibacterial properties against both Staphylococcus aureus and Escherichia coli (>99% antibacterial rates). Besides, the TZ@mMN-TENG can effectively promote cell proliferation and migration. In the diabetic rat full-thickness skin wound model infected with Staphylococcus aureus, the TZ@mMN-TENG can eliminate bacteria, accelerate epidermal growth (regenerative epidermis: approximate to 303.3 +/- 19.1 mu m), enhance collagen deposition, inhibit inflammation (lower TNF-alpha and IL-6 expression), and promote angiogenesis (higher CD31 and VEGF expression) to accelerate infected wound repair. Overall, the TZ@mMN-TENG provides a promising strategy for clinical application in diabetic wound repair.
更多
查看译文
关键词
anti-inflammation,antibacterial,electrical stimulation,infected diabetic wound repair,microneedle patch,self-powered triboelectric nanogenerator
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要