Lineage-resolved analysis of embryonic gene expression evolution in C. elegans and C. briggsae

Christopher Ryan Livingston Large, Rupa Khanal,LaDeana W Hillier,Chau Huynh, Connor Kubo,Junhyong Kim,Robert Waterston,John Isaac Murray

biorxiv(2024)

引用 0|浏览4
暂无评分
摘要
What constraints govern the evolution of gene expression patterns across development remains a fundamental question of evolutionary biology. The advent of single-cell sequencing opens the possibility of learning these constraints by systematically profiling homologous cells across different organisms. The nematode C. elegans is a well-studied model for embryonic development, and its invariant lineage that is conserved with other Caenorhabditis species makes it an ideal model to directly compare gene expression between homologous progenitor and terminal cell types across evolution. We have measured the spatiotemporal divergence of gene expression across embryogenesis by collecting, annotating and comparing the transcriptomes of homologous embryonic progenitors and terminal cell types, using a dataset comprising >200,000 C. elegans cells and >190,000 C. briggsae cells. We find a high level of similarity in gene expression programs between the species despite tens of millions of years of evolutionary divergence, consistent with their conserved developmental lineages. Even still, thousands of genes show divergence in their cell-type specific expression patterns, and these are enriched for categories involved in environmental response and behavior. Comparing the degree of expression conservation across cell types reveals that certain cell types such as neurons, have diverged more than others such as the intestine and body wall muscle. Taken together, this work identifies likely constraints on the evolution of developmental gene expression and provides a powerful resource for addressing diverse evolutionary questions. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要