Tunable-fidelity wave functions for the ab initio description of scattering and reactions

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
The no-core shell model (NCSM) is an ab initio method that solves the nuclear many-body problem by expanding the many-particle wave function into a (typically) harmonic oscillator basis and minimizing the energy to obtain the expansion coefficients. Extensions of the NCSM, such as its coupling with microscopic-cluster basis states, further allow for an ab initio treatment of light-ion nuclear reactions of interest for both astrophysics and nuclear technology applications. A downside of the method is the exponential scaling of the basis size with increasing number of nucleons and excitation quanta, which limits its applicability to mass A≲ 16 nuclei, except for variants where the basis is further down-selected via some truncation scheme. We consider a basis selection method for the NCSM that captures the essential degrees of freedom of the nuclear wave function leading to a favorable complexity scaling for calculations and enabling ab initio reaction calculations in sd-shell nuclei. The particle configurations within the NCSM basis are ordered based on their contribution to the first moment of the Hamiltonian matrix that results from the projection onto the many-body basis. The truncation scheme then consists in retaining only the lowest-first-moment configurations, which typically contain only few many-body basis states (Slater determinants). We present calculations for ^7Li and n+^12C scattering using nucleon-nucleon interactions derived from chiral effective field theory and softened using the similarity renormalization group method. The obtained energy levels invariably demonstrate exponential convergence with the size of the basis, and we find improved convergence in scattering calculations. To demonstrate the possibilities enabled by the approach, we also present a first calculation for the scattering of neutrons from ^24Mg.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要