Insights into biogeochemistry and hot spots distribution characteristics of redox-sensitive elements in the hyporheic zone: Transformation mechanisms and contributing factors

SCIENCE OF THE TOTAL ENVIRONMENT(2024)

引用 0|浏览1
暂无评分
摘要
Biogeochemical hot spots play a crucial role in the cycling and transport of redox-sensitive elements (RSEs) in the hyporheic zone (HZ). However, the transformation mechanisms of RSEs and patterns of RSEs hot spots in the HZ remain poorly understood. In this study, hydrochemistry and multi-isotope (N/C/S/O) datasets were collected to investigate the transformation mechanisms of RSEs, and explore the distribution characteristics of RSEs transformation hot spots. The results showed that spatial variability in key drivers was evident, while temporal change in RSEs concentration was not significant, except for dissolved organic carbon. Bacterial sulfate reduction (BSR) was the primary biogeochemical process for sulfate and occurred throughout the area. Ammonium enrichment was mainly caused by the mineralization of nitrogenous organic matter and anthropogenic inputs, with adsorption serving as the primary attenuation mechanism. Carbon dynamics were influenced by various biogeochemical processes, with dissolved organic carbon mainly derived from C3 plants and dissolved inorganic carbon from weathering of carbonate rocks and decomposition of organic matter. The peak contribution of dissolved organic carbon decomposition to the DIC pool was 46.44 %. The concentration thresholds for the ammonium enrichment and BSR hot spots were identified as 1.5 mg/L and 8.84 mg/L, respectively. The distribution pattern of RSEs hot spots was closely related to the hydrogeological conditions. Our findings reveal the complex evolution mechanisms and hot spots distribution characteristics of RSEs in the HZ, providing a basis for the safe utilization and protection of groundwater resources.
更多
查看译文
关键词
Hyporheic zone,Hot spots,Bacterial sulfate reduction,Organic carbon oxidation,Nitrogen transformation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要