A DNA-based and bifunctional nanomedicine for alleviating multi-organ injury in sepsis under diabetic conditions.

Acta biomaterialia(2024)

引用 0|浏览3
暂无评分
摘要
Sepsis, defined as a life-threatening organ dysfunction, is associated with increased mortality in individuals with diabetes mellitus. In sepsis under diabetic conditions (SUDC), the superimposed inflammatory response and excessive production of reactive oxygen species (ROS) can cause severe damage to the kidney and liver, making it challenging to effectively repair multi-organ injury. In this study, we report the development of a DNA-based bifunctional nanomedicine, termed IL10-rDON, generated by assembling interleukin 10 (IL10) with rectangular DNA origami nanostructures (rDON) to address multi-organ dysfunction in SUDC. IL10-rDON was shown to predominantly accumulate in the kidney and liver of diabetic mice in vivo and effectively alleviate inflammatory responses through its anti-inflammatory IL10 component. In addition, the consumption of rDON itself significantly reduced excessive ROS in the liver and kidney. Serum and histological examinations further confirmed that IL10-rDON treatment could effectively improve liver and kidney function, as well as the survival of mice with SUDC. This study demonstrates an attractive antioxidant and anti-inflammatory nanomedicine for addressing acute liver and renal failure. The integration of rDON with therapeutic agents using DNA nanotechnology is a promising strategy for generating multifunctional nanomedicine to treat multi-organ dysfunction and other complicated diseases. STATEMENT OF SIGNIFICANCE: Sepsis under diabetic conditions (SUDC) leads to high mortality due to multiple organ failure such as acute liver and kidney injury. The anti-inflammatory cytokine interleukin 10 (IL10) holds great potential to treat SUDC, while disadvantages of IL-10 such as short half-life, non-specific distribution and lack of antioxidant activities limit its wide clinical applications. In this study, we developed a DNA-based, bifunctional nanomedicine (IL10-rDON) by assembling IL10 with rectangular DNA origami nanostructures (rDON). We found that IL10-rDON preferentially accumulated and sufficiently attenuated the increased levels of ROS and inflammation in the kidney and liver injury sites, and eventually improved the survival rate of mice with SUDC. Our finding provides new insights into the application of DNA-based nanomedicine in treating multi-organ failure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要