Novel magneto-electrocatalyst Cr2CO2-MXene for boosting nitrogen reduction to ammonia

Neng Li, Zhongyong Zhang, Zheng Wang,Bin Liu, Deyong Zhou,Xing Zhou,Peng Zhang,Xiujian Zhao

MATERIALS HORIZONS(2024)

引用 0|浏览1
暂无评分
摘要
Ammonia (NH3) plays important roles in chemistry, the environment, and energy; however, the synthesis of NH3 relies heavily on the Haber-Bosch process, causing serious environmental pollution and energy consumption. A clean and effective strategy for the synthesis of NH3 involves nitrogen (N-2) being transformed to ammonia (NH3) using electrocatalysis. Adjusting the magnetism of electrocatalysts may improve their performance, and therefore, four magnetic states, nonmagnetic (NM), ferromagnetic (FM), interlayer antiferromagnetic (Inter-AFM), and intra-layer antiferromagnetic (Intra-AFM) Cr2CO2-MXene were designed to explore magnetoelectrocatalysis performance using well-defined density functional theory (DFT) calculations in this study. Upon comparing the nitrogen reduction limiting potentials of N-2 molecules on the surface of the four different magnetic states in Cr2CO2-MXene, and the selectivity calculations of the hydrogen evolution reaction (HER) and nitrogen reduction reaction (NRR), the Inter-AFM Cr2CO2-MXene is shown to be a better NRR electrocatalyst than the other three cases. This study paves way to unravel the mystery of the spin-catalytic mechanism and will lay a solid foundation for eNRR electrocatalysts with magnetic materials for environmental and energy applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要