Self-Supervised Deep Learning for Image Reconstruction: A Langevin Monte Carlo Approach

SIAM JOURNAL ON IMAGING SCIENCES(2023)

引用 0|浏览1
暂无评分
摘要
Deep learning has proved to be a powerful tool for solving inverse problems in imaging, and most of the related work is based on supervised learning. In many applications, collecting truth images is a challenging and costly task, and the prerequisite of having a training dataset of truth images limits its applicability. This paper proposes a self-supervised deep learning method for solving inverse imaging problems that does not require any training samples. The proposed approach is built on a reparametrization of latent images using a convolutional neural network, and the reconstruction is motivated by approximating the minimum mean square error estimate of the latent image using a Langevin dynamics-based Monte Carlo (MC) method. To efficiently sample the network weights in the context of image reconstruction, we propose a Langevin MC scheme called Adam-LD, inspired by the well-known optimizer in deep learning, Adam. The proposed method is applied to solve linear and nonlinear inverse problems, specifically, sparse-view computed tomography image reconstruction and phase retrieval. Our experiments demonstrate that the proposed method outperforms existing unsupervised or self-supervised solutions in terms of reconstruction quality.
更多
查看译文
关键词
self-supervised learning,inverse problems,image reconstruction,Langevin dynamics,Bayesian inference
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要