A Cellulose/Chitosan Dual Cross-Linked Multifunctional and Resilient Hydrogel for Emergent Open Wound Management.

Advanced healthcare materials(2024)

引用 0|浏览0
暂无评分
摘要
Adhesive hydrogel holds huge potential in biomedical applications, such as hemostasis and emergent wound management during outpatient treatment or surgery. However, most adhesive hydrogels underperform to offer robust adhesions on the wet tissue, increasing the risk of hemorrhage and reducing the fault tolerance of surgery. To address this issue, this work develops a polysaccharide-based bioadhesive hydrogel tape (ACAN) consisting of dual cross-linking of allyl cellulose (AC) and carboxymethyl chitosan (CMCS). The hygroscopicity of AC and CMCS networks enables ACAN to remove interfacial water from the tissue surface and initializes a physical cross-link instantly. Subsequently, covalent cross-links are developed with amine moieties to sustain long-term and robust adhesion. The dual cross-linked ACAN also has good cytocompatibility with controllable mechanical properties matching to the tissue, where the addition of CMCS provides remarkable antibacterial properties and hemostatic capability. Moreover, compared with commercially available 3 M film, ACAN provides an ultrafast wound healing on tissue. The ACAN hybrid hydrogels have advantages such as biocompatibility and antibacterial, hemostatic, and wound healing properties, shedding new light on first-aid tape design and advancing the cellulose-based materials technology for high-performance biomedical applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要