Block Sequence Effects on the Self-Assembly Behaviors of Polypeptide-Based Penta-Block Copolymer Hydrogels

Ke-Hsin Wang,Chung-Hao Liu, Dun-Heng Tan,Mu-Ping Nieh,Wei-Fang Su

ACS APPLIED MATERIALS & INTERFACES(2024)

引用 0|浏览0
暂无评分
摘要
Peptide-based hydrogels have great potential for applications in tissue engineering, drug delivery, and so on. We systematically synthesize, characterize, and investigate the self-assembly behaviors of a series of polypeptide-based penta-block copolymers by varying block sequences and lengths. The copolymers contain hydrophobic blocks of poly(gamma-benzyl-l-glutamate) (PBG, B-x) and two kinds of hydrophilic blocks, poly(l-lysine) (PLL, K-y) and poly(ethylene glycol) (PEG, EG(34)), where x and y are the number of repeating units of each block, where PBG and PLL blocks have unique functions for nerve regeneration and cell adhesion. It shows that a sufficient length of the middle hydrophilic segment capped with hydrophobic end PBG blocks is required. They first self-assemble into flower-like micelles and sequentially form transparent hydrogels (as low as 2.3 wt %) with increased polymer concentration. The hydrogels contain a microscale porous structure, a desired property for tissue engineering to facilitate the access of nutrient flow for cell growth and drug delivery systems with high efficiency of drug storage. We hypothesize that the structure of B-x-K-y-EG(34)-K-y-B-x agglomerates is beyond micron size (transparent), while that of K-y-B-x-EG(34)-B-x-K-y is on the submicron scale (opaque). We establish a working strategy to synthesize a polypeptide-based block copolymer with a wide window of sol-gel transition. The study offers insight into rational polypeptide hydrogel design with specific morphology, exploring the novel materials as potential candidates for neural tissue engineering.
更多
查看译文
关键词
hydrogel,block copolymer,self-assembly,micelle,peptide,small-angle X-ray scattering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要