Molecular tagging of seed size using MITE markers in an induced large seed mutant with higher cotyledon cell size in groundnut

3 Biotech(2024)

引用 0|浏览2
暂无评分
摘要
A large seed mutant, TG 89 having a 76.7% increment in hundred kernel weight in comparison to its parent TG 26, was isolated from an electron beam-induced mutagenized population. Studies based on environmental scanning electron microscopy of both parent and mutant revealed that the mutant seed cotyledon had significantly bigger cell size than parent. A mapping population with 122 F 2 plants derived from the mutant and a distant normal seed genotype (ICGV 15007) was utilized to map the QTL associated with higher HKW. Bulk segregant analysis revealed putative association of three markers with this mutant large seed trait. Further, genotyping of F 2 individuals with polymorphic markers detected 14 linkage groups with a map distance of 1053 cM. QTL analysis revealed a significant additive major QTL for the mutant large seed trait on linkage group A05 explaining 12.7% phenotypic variation for the seed size. This QTL was located between flanking markers AhTE333 and AhTE810 having a map interval of 4.7 cM which corresponds to 90.65 to 107.24 Mbp in A05 chromosome, respectively. Within this genomic fragment, an ortholog of the BIG SEEDS 1 gene was found at 102,476,137 bp. Real-time PCR revealed down-regulation of this BIG SEEDS 1 gene in the mutant indicating a loss of function mutation giving rise to a large seed phenotype. This QTL was validated in 11 advanced breeding lines having large seed size from this mutant but with varied genetic backgrounds. This validation showcased a highly promising selection accuracy of 90.9% for the marker-assisted selection.
更多
查看译文
关键词
Arachis hypogaea,Cell size,Linkage map,Large seed mutant,Quantitative trait loci
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要