Harvest of functional mesenchymal stem cells derived from in vivo osteo-organoids.

Biomaterials translational(2023)

引用 0|浏览0
暂无评分
摘要
Bone marrow-derived mesenchymal stem cells (BM-MSCs) play a crucial role in stem cell therapy and are extensively used in regenerative medicine research. However, current methods for harvesting BM-MSCs present challenges, including a low yield of primary cells, long time of in vitro expansion, and diminished differentiation capability after passaging. Meanwhile mesenchymal stem cells (MSCs) recovered from cell banks also face issues like toxic effects of cryopreservation media. In this study, we provide a detailed protocol for the isolation and evaluation of MSCs derived from in vivo osteo-organoids, presenting an alternative to autologous MSCs. We used recombinant human bone morphogenetic protein 2-loaded gelatin sponge scaffolds to construct in vivo osteo-organoids, which were stable sources of MSCs with large quantity, high purity, and strong stemness. Compared with protocols using bone marrow, our protocol can obtain large numbers of high-purity MSCs in a shorter time (6 days vs. 12 days for obtaining passage 1 MSCs) while maintaining higher stemness. Notably, we found that the in vivo osteo-organoid-derived MSCs exhibited stronger anti-replicative senescence capacity during passage and amplification, compared to BM-MSCs. The use of osteo-organoid-derived MSCs addresses the conflict between the limitations of autologous cells and the risks associated with allogeneic sources in stem cell transplantation. Consequently, our protocol emerges as a superior alternative for both stem cell research and tissue engineering.
更多
查看译文
关键词
anti-replicative senescence,in vivo osteo-organoid,mesenchymal stem cell,recombinant human bone morphogenetic protein 2,stem cell therapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要