Unraveling essential optoelectronic and thermoelectric excellence in CsZrCuSe3 with hybrid functional and Boltzmann transport insights

RESULTS IN PHYSICS(2024)

引用 0|浏览1
暂无评分
摘要
This research paper delves into the optoelectronic and thermoelectric properties of the quaternary layered selenide compound CsZrCuSe3 , employing a comprehensive computational approach based on density functional theory (DFT) with the HSE06 functional and Boltzmann transport theory. CsZrCuSe3 is a quaternary chalcogenide compound with a tunable bandgap, making it a promising candidate for optoelectronic applications such as photodetectors, solar cells, and LEDs. The electronic properties of CsZrCuSe3 were investigated, revealing a direct bandgap of 1.32 eV at the Gamma point. The optical properties, including the dielectric constant and optical conductivity, were analyzed, demonstrating strong absorption in the violet -blue range. Furthermore, the paper explores the thermoelectric properties of CsZrCuSe3 , including the Seebeck coefficient, electrical conductivity, thermal conductivity, and the figure of merit (ZT). These properties exhibit intriguing behavior dependent on temperature and chemical potential, with an anomaly observed in the Seebeck coefficient at specific chemical potentials. This anomaly presents an opportunity to gain insights into the complex interplay of electronic properties in semiconductor materials, potentially leading to advancements in thermoelectric applications. Further research and collaboration are essential to decipher the underlying mechanisms and optimize the material for practical use in various technological applications.
更多
查看译文
关键词
Quaternary chalcogenide (CsZrCuSe 3 ),Optoelectronic properties,Thermoelectric properties,Density Functional Theory (DFT),Figure of merit (ZT)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要