In vivo evolution of a Klebsiella pneumoniae capsule defect with wcaJ mutation promotes complement-mediated opsono-phagocytosis during recurrent infection.

The Journal of infectious diseases(2024)

引用 0|浏览5
暂无评分
摘要
BACKGROUND:Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp) bloodstream infections are associated with high mortality. We studied clinical bloodstream KPC-Kp isolates to investigate mechanisms of resistance to complement, a key host defense against bloodstream infection. METHODS:We tested growth of KPC-Kp isolates in human serum. In serial isolates from a single patient, we performed whole genome sequencing and tested for complement resistance and binding by mixing study, direct ELISA, flow cytometry, and electron microscopy. We utilized an isogenic deletion mutant in phagocytosis assays and an acute lung infection model. RESULTS:We found serum resistance in 16 of 59 (27%) KPC-Kp clinical bloodstream isolates. In five genetically-related bloodstream isolates from a single patient, we noted a loss-of-function mutation in the capsule biosynthesis gene, wcaJ. Disruption of wcaJ was associated with decreased polysaccharide capsule, resistance to complement-mediated killing, and surprisingly, increased binding of complement proteins. Furthermore, an isogenic wcaJ deletion mutant exhibited increased opsono-phagocytosis in vitro and impaired in vivo control in the lung after airspace macrophage depletion in mice. CONCLUSIONS:Loss of function in wcaJ led to increased complement resistance, complement binding, and opsono-phagocytosis, which may promote KPC-Kp persistence by enabling co-existence of increased bloodstream fitness and reduced tissue virulence.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要