Green and low-temperature synthesis of homogeneously alloyed AgCu nanoparticles supported on SiO2 for antibacterial and antifouling activities

JOURNAL OF ALLOYS AND COMPOUNDS(2024)

引用 0|浏览2
暂无评分
摘要
AgCu alloy is attractive for various bio-applications; however, producing it at favorable temperatures remains challenging. This study introduces a green and cost-effective method using polyols for synthesizing homogeneously alloyed AgCu nanoparticles (NPs) supported on silica (AgCu-SiO(2 )nanocomposite) at low temperatures. Optimizing synthesis factors is discussed in detail. Through characterizations, the stable nanocomposite, in which homogeneously alloyed AgCu NPs were formed with an average size of 95.7 nm and uniformly attached to silica particles, can be obtained at 125 degrees C after a 45-min process. The excellent antibacterial activity of AgCuSiO2 is evaluated (against Gram (-) Escherichia coli and Gram (+) Staphylococcus aureus bacteria) and compared with that of monometallic Ag-SiO2 and Cu-SiO2 nanocomposites. Besides, the antifouling application of AgCuSiO2 used as paint is also demonstrated, revealing its protecting ability against marine environment corrosion within 180 days better than commercial paints. Overall, our homogeneously alloyed AgCu NPs supported on silica are a promising candidate for developing efficient and environmentally friendly antifouling agents due to the facile synthesis method, good antibacterial properties, and effective antifouling performance.
更多
查看译文
关键词
Nanocomposite,Bimetallic,Nanoparticles,Alloy,Antibacterial,Antifouling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要