Mitochondria-targeted carrier-free nanoparticles based on dihydroartemisinin against hepatocellular carcinoma

Chinese Chemical Letters(2024)

引用 0|浏览6
暂无评分
摘要
Hepatocellular carcinoma is a common and fatal malignancy for which there is no effective systemic therapeutic strategy. Dihydroartemisinin (DHA), a derivative of artemisinin, has been shown to exert anti-tumor effects through the production of reactive oxygen species (ROS) and resultant mitochondrial damage. However, clinical translation is limited by several drawbacks, such as insolubility, instability and low bioavailability. Here, based on a nanomedicine-based delivery strategy, we fabricated mitochondria-targeted carrier-free nanoparticles coupling DHA and triphenylphosphonium (TPP), aiming to improve bioavailability and mitochondrial targeting. DHA-TPP nanoparticles can be passively delivered to the tumor site by enhanced penetration and retention and then internalized. Flow cytometry and Western blot analysis showed that DHA-TPP nanoparticles increased intracellular ROS, which increased mitochondrial stress and in turn upregulated the downstream Bcl-2 pathway, leading to apoptosis. In vivo experiments showed that DHA-TPP nanoparticles exhibited anti-tumor effects in a mouse model of hepatocellular carcinoma. These findings suggest carrier-free DHA-TPP nanoparticles as a potential therapeutic strategy for hepatocellular carcinoma.
更多
查看译文
关键词
Hepatocellular carcinoma,Carrier-free nanoparticles,Dihydroartemisinin,Mitochondria targeting,Apoptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要