Parallel-pipelined-memory Blowfish FPGA-based radio system with improved power-throughput for secured IoT network

Ain Shams Engineering Journal(2024)

引用 0|浏览5
暂无评分
摘要
The Internet of Things (IoT) has emerged as a disruptive force, transforming industries, cities, and daily life in a time of unprecedented connection. This outcome has called for robust security, reliability, and efficient power management for the IoT network. The security of small mobile devices within the IoT network has become a pressing concern due to the multitude of wireless vulnerabilities that threaten data transmission, the harsh wireless environment for data transmission, and the need for low-power consumption devices. This study proposed the development of a new parallel-pipelined-memory (P2M) Blowfish field programmable gate array (FPGA)-based radio system as a prototype of a secured mobile device for IoT application. The FPGA platform verified the proposed system, indicating a minimum of 64 % power-throughput improvement. In this case, the hardware utilisation was reduced by 3.5 % compared to the recently published works. Meanwhile, the real-time transmission analysis of the suggested P2M Blowfish radio system in a non-line-of-sight (NLOS) indoor environment indicated that the transmitted data over 2.4 GHz ZigBee standard at 10 dBm radio frequency (RF) power level demonstrated the optimum signal quality with received signal strength and signal-to-noise ratio (SNR) of −34.58 dBm and 39.06 dB, respectively. This feature also included a 6.25 × 10−3 minimum bit error rate (BER) at 61 m as the maximum communication range. Thus, the P2M Blowfish FPGA-based radio system could improve the security, reliability, and power efficiency of IoT networks.
更多
查看译文
关键词
Parallel-pipelined-memory,Blowfish, FPGA-based radio system,Power-throughput,IoT network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要