Tunability of electronic properties in the 2D MoS2/α-tellurene/WS2 heterotrilayer via biaxial strain and electric field.

Wenli Zhang, Zhuang Ma, Jing Wang,Bin Shao,Xu Zuo

Physical Chemistry Chemical Physics(2024)

引用 0|浏览1
暂无评分
摘要
Alpha-tellurene (α-Te), a two-dimensional (2D) material that has been theoretically predicted and experimentally verified, has garnered significant attention due to its unique properties. In this study, we investigated the 2D trilayer MoS2/α-Te/WS2 van der Waals heterostructure with different stacking orders using first-principles calculations. Our results indicate that this heterotrilayer exhibits an intrinsic type-I band alignment and an indirect band gap similar to that of monolayer α-Te. Notably, the band edges of the heterostructure can be modulated by biaxial strain and an external electric field, enabling these edges to arise from different monolayers. This controlled manipulation facilitates the effective separation of photogenerated electron-hole pairs and prolongs the carrier lifetime. Moreover, the heterostructure can undergo a transition from an indirect to a direct band gap under biaxial compressive strain or a moderate negative electric field, and semiconductor-to-metal transition can also be achieved by intensifying the biaxial strain and external electric field. Overall, our research provides valuable theoretical insights into the potential applications of α-Te-based heterostructures, rendering them promising candidates for the next generation of nanodevices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要