Nonlinear ferroelectric characteristics of barium titanate nanocrystals determined via a polymer nanocomposite approach

NANOSCALE(2024)

引用 0|浏览0
暂无评分
摘要
The growing demand for high energy storage materials has garnered substantial attention towards lead-free ferroelectric nanocrystals (NCs), such as BaTiO3 (BTO), for next-generation multilayer ceramic capacitors. Notably, it remains challenging to accurately measure the dielectric constant and polarization-electric field (P-E) hysteresis loop for BTO NCs. Herein, we report on nonlinear ferroelectric characteristics of BTO NCs via a polymer nanocomposite approach. Specifically, poly(vinyl pyrrolidone) (PVP)/BTO nanocomposite films of 3-10 mu m thickness, containing 380 nm tetragonal-phased and 60 nm cubic-phased BTO NCs with uniform particle dispersion, were prepared. Theoretical deconvolution of the broad experimental P-E loops of the PVP/BTO NC composite films revealed three contributions, that is, the linear deformational polarization of the nanocomposites, the polarization of BTO NCs (P-p), and the polarization from strong particle-particle interactions. Using different mixing rules and nonlinear dielectric analysis, the overall dielectric constants of BTO NCs were obtained, from which the internal field in the BTO NCs (E-p) was estimated. Consequently, the P-p-E-p hysteresis loops were obtained for the BTO380 and BTO60 NCs. Interestingly, BTO380 exhibited square-shaped ferroelectric loops, whereas BTO60 displayed slim paraelectric loops. This work presents a robust and versatile route to extract the P-p-E-p loops of ferroelectric NCs from polymer/ceramic nanocomposites.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要