Phenotypic and transcriptome profiling of spikes reveals the regulation of light regimens on spike growth and fertile floret number in wheat

PLANT CELL AND ENVIRONMENT(2024)

引用 0|浏览3
暂无评分
摘要
The spike growth phase is critical for the establishment of fertile floret (grain) numbers in wheat (Triticum aestivum L.). Then, how to shorten the spike growth phase and increase grain number synergistically? Here, we showed high-resolution analyses of floret primordia (FP) number, morphology and spike transcriptomes during the spike growth phase under three light regimens. The development of all FP in a spike could be divided into four distinct stages: differentiation (Stage I), differentiation and morphology development concurrently (Stage II), morphology development (Stage III), and polarization (Stage IV). Compared to the short photoperiod, the long photoperiod shortened spike growth and stimulated early flowering by shortening Stage III; however, this reduced assimilate accumulation, resulting in fertile floret loss. Interestingly, long photoperiod supplemented with red light shortened the time required to complete Stages I-II, then raised assimilates supply in the spike and promoted anther development before polarization initiation, thereby increasing fertile FP number during Stage III, and finally maintained fertile FP development during Stage IV until they became fertile florets via a predicted dynamic gene network. Our findings proposed a light regimen, critical stages and candidate regulators that achieved a shorter spike growth phase and a higher fertile floret number in wheat. A light regimen could achieve a 'shorter spike growth phase' and 'higher fertile floret number' in wheat by regulating gene expression, assimilate accumulation and morphology development in the critical stages of floret development.
更多
查看译文
关键词
assimilate accumulation,floret development,LED light,spike growth phase,transcriptomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要