Soft-Hard Janus Nanoparticles Triggered Hierarchical Conductors with Large Stretchability, High Sensitivity, and Superior Mechanical Properties.

Hailing He,Tiantian Yang, Tianlin Liu, Yeqi Gao, Zhaoyuan Zhang,Zhenzhong Yang,Fuxin Liang

Advanced materials (Deerfield Beach, Fla.)(2024)

引用 0|浏览7
暂无评分
摘要
There is a long-standing conflict between the large stretchability and high sensitivity for strain sensors, a strategy of decoupling the mechanical/electrical module by constructing the hierarchical conductor has been developed in this study. The hierarchical conductor, consisting of a mechanically stretchable layer, a conductive network layer, and a strongly bonded interface, can be produced in a simple one-step process with the aid of soft-hard Janus nanoparticles (JNPs). The introduction of JNPs in the stretchable layer can evenly distribute stress and dissipate energy due to forming the rigid-flexible homogeneous networks. Specifically, JNPs can drive graphene nanosheets (GNS) to fold or curl, creating the unique JNPs-GNS building block that can further construct the conductive network. Due to its excellent deformability to hinder crack propagation, the flexible conductive network could be stretched continuously and the local conductive pathways could be reconstructed. Consequently, the hierarchical conductor could detect both subtle strain of 0-2% and large strain of up to 370%, with a gauge factor (GF) from 66.37 to 971.70, demonstrating outstanding stretchability and sensitivity. And it also owns large tensile strength (5.28 MPa) and high deformation stability. This hierarchical design will give graphene-based sensors a major boost in emerging applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要