Exploring multistep bischofite waste pyrolysis: insights from advanced kinetic analysis and thermogravimetric techniques

Environmental Science and Pollution Research(2024)

引用 0|浏览1
暂无评分
摘要
Pyrolysis technology is crucial for realizing waste bischofite resource utilization. However, previous studies overlooked the complexity of multistep pyrolysis, resulting in a lack of thorough knowledge of the pyrolysis behavior and kinetics. The pyrolysis products were characterized using XRD and FTIR to indicate the bischofite pyrolysis behavior. Additionally, the multistep kinetics was studied using the segmented single-step reaction (SSSR) and Fraser-Suzuki combined kinetic (FSCK) methods. The results show that the bischofite pyrolysis is divided into dehydration and hydrolysis. The former refers to removing crystalline water from MgCl 2 ·nH 2 O (n = 4,6). At the same time, the latter is related to the removal of HCl, characterized by the strengthening of the Mg-O bond in the FTIR analysis and the emergence of MgOHCl·1.5H 2 O in the XRD examination. The two main stages are divided into three dehydration reactions (D-1, D-2, D-3) and three hydrolysis reactions (H-1, H-2, H-3) by DTG-DDTG or Fraser-Suzuki deconvolution. Compared with the SSSR method, the FSCK method has improved model repeatability for multistep kinetic parameters. Following Fraser-Suzuki deconvolution, the FSCK method creates almost the same activation energy results when using the Friedman (FR), Kissinger–Akahira–Sunose (KAS), and Vyazovkin (VZK). This work provides fundamental data to promote the maximizing waste bischofite resource utilization.
更多
查看译文
关键词
Bischofite,Circular economy,Fraser–Suzuki,Kinetic parameters,Pyrolysis,Resource recovery,Solid waste management,Thermogravimetric analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要