Microwave-assisted ZnO-decorated carbon urchin resembling 'shish-kebab' morphology with self-healing and enhanced electromagnetic shielding properties

NANOSCALE(2024)

引用 0|浏览2
暂无评分
摘要
Herein, inspired by Acacia auriculiformis fruit, the shish-kebab-like growth of ZnO on carbon urchin (ZnO@CU) was designed using microwave radiation, thus leading to a hierarchal 3D structure that can promote multiple internal reflections through polarization centers. This hierarchal structure was then dispersed in a designer polyetherimide (PEI) matrix containing dynamic covalent bonds that can undergo metathesis, triggered by temperature, to harness self-healing properties in the composite. Such key attributes are required for their potential use in EMI shielding applications where frequent repairs are indispensable. Morphological investigation revealed that the ZnO flower was periodically nucleated like 'shish-kebab' structures on CU surfaces. CU was designed from short carbon fibers using a facile modified method. The EMI shielding performance of the resulting composites was investigated in the X-band, illustrating a shielding effectiveness of -40.6 dB for 2 wt% of ZnO@CU loading, and the composite can be preserved after the self-healing procedure. The ZnO 'kebabs' on 'CU shish' facilitated multiple scattering and numerous polarization centers to improve the EMI shielding performances at extremely low filler contents. In addition, the mechanical and thermal properties of the composite showed improved structural integrity and superior resistance to extreme temperatures, respectively. Overall, the proposed ZnO@CU/PEI composite has great potential to fulfill the increasing demands for lightweight EMI shielding materials in many fields. Herein, inspired by Acacia auriculiformis fruit, the shish-kebab-like growth of ZnO on carbon urchin (ZnO@CU) was designed using microwave radiation, thus leading to a hierarchal 3D structure that can promote multiple internal reflections through polarization centers.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要