Role of Transporters and Enzymes in Metabolism and Distribution of 4-Chlorokynurenine (AV-101)

MOLECULAR PHARMACEUTICS(2024)

引用 0|浏览13
暂无评分
摘要
4-Chlorokynurenine (4-Cl-KYN, AV-101) is a prodrug of a NMDA receptor antagonist and is in clinical development for potential CNS indications. We sought to further understand the distribution and metabolism of 4-Cl-KYN, as this information might provide a strategy to enhance the clinical development of this drug. We used excretion studies in rats, in vitro transporter assays, and pharmacogenetic analysis of clinical trial data to determine how 4-Cl-KYN and metabolites are distributed. Our data indicated that a novel acetylated metabolite (N-acetyl-4-Cl-KYN) did not affect the uptake of 4-Cl-KYN across the blood-brain barrier via LAT1. 4-Cl-KYN and its metabolites were found to be renally excreted in rodents. In addition, we found that N-acetyl-4-Cl-KYN inhibited renal and hepatic transporters involved in excretion. Thus, this metabolite has the potential to limit the excretion of a range of compounds. Our pharmacogenetic analysis found that a SNP in N-acetyltransferase 8 (NAT8, rs13538) was linked to levels of N-acetyl-4-Cl-KYN relative to 4-Cl-KYN found in the plasma and that a SNP in SLC7A5 (rs28582913) was associated with the plasma levels of the active metabolite, 7-Cl-KYNA. Thus, we have a pharmacogenetics-based association for plasma drug level that could aid in the drug development of 4-Cl-KYN and have investigated the interaction of a novel metabolite with drug transporters.
更多
查看译文
关键词
4-chlorokynurenine,N-acetyl-4-chlorokynurenine,N-acetyltransferase,NAT8,NMDAR,SLC7A5
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要