A two-circuit approach to reducing quantum resources for the quantum lattice Boltzmann method

Sriharsha Kocherla, Austin Adams,Zhixin Song,Alexander Alexeev,Spencer H. Bryngelson

CoRR(2024)

引用 0|浏览5
暂无评分
摘要
Computational fluid dynamics (CFD) simulations often entail a large computational burden on classical computers. At present, these simulations can require up to trillions of grid points and millions of time steps. To reduce costs, novel architectures like quantum computers may be intrinsically more efficient at the appropriate computation. Current quantum algorithms for solving CFD problems use a single quantum circuit and, in some cases, lattice-based methods. We introduce the a novel multiple circuits algorithm that makes use of a quantum lattice Boltzmann method (QLBM). The two-circuit algorithm we form solves the Navier-Stokes equations with a marked reduction in CNOT gates compared to existing QLBM circuits. The problem is cast as a stream function--vorticity formulation of the 2D Navier-Stokes equations and verified and tested on a 2D lid-driven cavity flow. We show that using separate circuits for the stream function and vorticity lead to a marked CNOT reduction: 35% in total CNOT count and 16% in combined gate depth. This strategy has the additional benefit of the circuits being able to run concurrently, further halving the seen gate depth. This work is intended as a step towards practical quantum circuits for solving differential equation-based problems of scientific interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要