Genetic Associations With Acceleration, Change of Direction, Jump Height, and Speed in English Academy Football Players.

Journal of strength and conditioning research(2023)

引用 0|浏览2
暂无评分
摘要
ABSTRACT:McAuley, ABT, Hughes, DC, Tsaprouni, LG, Varley, I, Suraci, B, Bradley, B, Baker, J, Herbert, AJ, and Kelly, AL. Genetic associations with acceleration, change of direction, jump height, and speed in English academy football players. J Strength Cond Res 38(2): 350-359, 2024-High-intensity movements and explosive actions are commonly assessed during athlete development in football (soccer). Although many environmental factors underpin these power-orientated traits, research suggests that there is also a sizeable genetic component. Therefore, this study examined the association of 22 single-nucleotide polymorphisms (SNPs) with acceleration, change of direction, jump height, and speed in academy football players. One hundred and forty-nine, male, under-12 to under-23 football players from 4 English academies were examined. Subjects performed 5-, 10-, 20-, and 30-m sprints, countermovement jumps (CMJs), and the 5-0-5 agility test. Simple linear regression was used to analyze individual SNP associations, whereas both unweighted and weighted total genotype scores (TGS; TWGS) were computed to measure the combined influence of all SNPs. To control for multiple testing, a Benjamini-Hochberg false discovery rate of 0.05 was applied to all genotype model comparisons. In isolation, the GALNT13 (rs10196189) G allele and IL6 (rs1800795) G/G genotype were associated with faster (∼4%) 5-, 10-, and 20-m sprints and higher (∼16%) CMJs, respectively (p < 0.001). Furthermore, the TGS and TWGS significantly correlated with all performance assessments, explaining between 6 and 33% of the variance (p < 0.001). This study demonstrates that some genetic variants are associated with power-orientated phenotypes in youth football players and may add value toward a future polygenic profile of physical performance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要