Assessing the Therapeutic Impacts of HAMLET and FOLFOX on BRAF-Mutated Colorectal Cancer: A Study of Cancer Cell Survival and Mitochondrial Dynamics In Vitro and Ex Vivo

MEDICINA-LITHUANIA(2024)

引用 0|浏览2
暂无评分
摘要
Background and Objectives: Colorectal cancer (CRC) is a major global health challenge. The BRAF V600E mutation, found in 8-12% of CRC patients, exacerbates this by conferring poor prognosis and resistance to therapy. Our study focuses on the efficacy of the HAMLET complex, a molecular substance derived from human breast milk, on CRC cell lines and ex vivo biopsies harboring this mutation, given its previously observed selective toxicity to cancer cells. Materials and Methods: we explored the effects of combining HAMLET with the FOLFOX chemotherapy regimen on CRC cell lines and ex vivo models. Key assessments included cell viability, apoptosis/necrosis induction, and mitochondrial function, aiming to understand the mutation-specific resistance or other cellular response mechanisms. Results: HAMLET and FOLFOX alone decreased viability in CRC explants, irrespective of the BRAF mutation status. Notably, their combination yielded a marked decrease in viability, particularly in the BRAF wild-type samples, suggesting a synergistic effect. While HAMLET showed a modest inhibitory effect on mitochondrial respiration across both mutant and wild-type samples, the response varied depending on the mutation status. Significant differences emerged in the responses of the HT-29 and WiDr cell lines to HAMLET, with WiDr cells showing greater resistance, pointing to factors beyond genetic mutations influencing drug responses. A slight synergy between HAMLET and FOLFOX was observed in WiDr cells, independent of the BRAF mutation. The bioenergetic analysis highlighted differences in mitochondrial respiration between HT-29 and WiDr cells, suggesting that bioenergetic profiles could be key in determining cellular responses to HAMLET. Conclusions: We highlight the potential of HAMLET and FOLFOX as a combined therapeutic approach in BRAF wild-type CRC, significantly reducing cancer cell viability. The varied responses in CRC cell lines, especially regarding bioenergetic and mitochondrial factors, emphasize the need for a comprehensive approach considering both genetic and metabolic aspects in CRC treatment strategies.
更多
查看译文
关键词
colorectal cancer,BRAF mutation,HAMLET,bioactive milk compound,mitochondrial function,ex vivo treatment,precision medicine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要