Electron mobility of SnO2 from first principles

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
The transparent conducting oxide SnO2 is a wide bandgap semiconductor that is easily n-type doped and widely used in various electronic and optoelectronic applications. Experimental reports of the electron mobility of this material vary widely depending on the growth conditions and doping concentrations. In this work, we calculate the electron mobility of SnO2 from first principles to examine the temperature- and doping-concentration dependence, and to elucidate the scattering mechanisms that limit transport. We include both electron-phonon scattering and electron-ionized impurity scattering to accurately model scattering in a doped semiconductor. We find a strongly anisotropic mobility that favors transport in the direction parallel to the c-axis. At room temperature and intrinsic carrier concentrations, the low-energy polar-optical phonon modes dominate scattering, while ionized-impurity scattering dominates above 10^18 cm^-3.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要