Ultrafine Ru nanoparticles stabilized by V8C7/C for enhanced hydrogen evolution reaction at all pH.

Science bulletin(2024)

引用 0|浏览14
暂无评分
摘要
The development of cost-effective electrocatalysts with high efficiency and long durability for hydrogen evolution reaction (HER) remains a great challenge in the field of water splitting. Herein, we design an ultrafine and highly dispersed Ru nanoparticles stabilized on porous V8C7/C matrix via pyrolysis of the metal-organic frameworks V-BDC (BDC: 1,4-benzenedicarboxylate). The obtained Ru-V8C7/C composite exhibits excellent HER performance in all pH ranges. At the overpotential of 40 mV, its mass activity is about 1.9, 4.1 and 9.4 times higher than that of commercial Pt/C in acidic, neutral and alkaline media, respectively. Meanwhile, Ru-V8C7/C shows the remarkably high stability in all pH ranges which, in particular, can maintain the current density of 10 mA cm-2 for over 150 h in 1.0 mol L-1 phosphate buffer saline (PBS). This outstanding HER performance can be attributed to the high intrinsic activity of Ru species and their strong interface interactions to the V8C7/C substrate. The synergistic effect of abundant active sites on the surface and the formed Ru-C-V units at the interface promotes the adsorption of reaction intermediates and the release of active sites, contributing the fast HER kinetics. This work provides a reference for developing versatile and robust HER catalysts by surface and interface regulation for pH tolerance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要