CaERF1- mediated ABA signal positively regulates camptothecin biosynthesis by activating the iridoid pathway in Camptotheca acuminata.

Yanyan Wang,Yang Wang, AiKun Pan, Qi Miao, Yuqian Han,Zhiwen Liu,Fang Yu

International journal of biological macromolecules(2024)

引用 0|浏览1
暂无评分
摘要
Camptotheca acuminata is one of the primary sources of camptothecin (CPT), which is widely used in the treatment of human malignancies because of its inhibitory activity against DNA topoisomerase I. Although several transcription factors have been identified for regulating CPT biosynthesis in other species, such as Ophiorrhiza pumila, the specific regulatory components controlling CPT biosynthesis in C. acuminata have yet to be definitively determined. In this study, CaERF1, an DREB subfamily of the APETALA2/ethylene response factors (AP2ERFs), was identified in C. acuminata. The transient overexpression and silencing of CaERF1 in C. acuminata leaves confirmed that it positively regulates the accumulation of CPT by inducing the expression of CaCYC1 and CaG8O in the iridoid pathway. Results of transient transcriptional activity assay and yeast one-hybrid assays have showed that CaERF1 transcriptionally activates the expression of CaCYC1 and CaG8O by binding to RAA and CEI elements in the promoter regions of these two genes. Furthermore, the expression of CaCYC1 and CaG8O in CaERF1-silenced leaves was less sensitive to ABA treatment, indicating that CaERF1 is a crucial component involved in ABA-regulated CPT biosynthesis in C. acuminata.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要