# Precision Franck-Condon spectroscopy from highly-excited vibrational states

arxiv（2024）

Abstract

As per the Franck-Condon principle, absorption spectroscopy reveals changes in nuclear geometry in molecules or solids upon electronic excitation. It is often assumed these changes cannot be resolved beyond the ground vibrational wavefunction width ($\sqrt{\hbar/m\omega}$). Here, we show this resolution dramatically improves with highly-excited vibrational initial states (with occupation number $\langle n\rangle$). These states magnify changes in geometry by $2\langle n\rangle +1$, a possibly counterintuitive result given the spatial uncertainty of Fock states grows with $n$. We also discuss generalizations of this result to multimode systems. Our result is relevant to optical spectroscopy, polariton condensates, and quantum simulators ($\textit{e.g.}$, boson samplers).

MoreTranslated text

AI Read Science

Must-Reading Tree

Example

Generate MRT to find the research sequence of this paper

Chat Paper

Summary is being generated by the instructions you defined