Precision Franck-Condon spectroscopy from highly-excited vibrational states

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
As per the Franck-Condon principle, absorption spectroscopy reveals changes in nuclear geometry in molecules or solids upon electronic excitation. It is often assumed these changes cannot be resolved beyond the ground vibrational wavefunction width ($\sqrt{\hbar/m\omega}$). Here, we show this resolution dramatically improves with highly-excited vibrational initial states (with occupation number $\langle n\rangle$). These states magnify changes in geometry by $2\langle n\rangle +1$, a possibly counterintuitive result given the spatial uncertainty of Fock states grows with $n$. We also discuss generalizations of this result to multimode systems. Our result is relevant to optical spectroscopy, polariton condensates, and quantum simulators ($\textit{e.g.}$, boson samplers).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要