Metabolomics and in-vitro bioactivities studies of fermented Musa paradisiaca pulp: A potential alpha-amylase inhibitor

HELIYON(2024)

引用 0|浏览0
暂无评分
摘要
The in-vitro synthesis of bio-compounds via fermentation is a promising route for bioactive molecules intended for disease control and management. Therefore, this study evaluated the effect of fermentation on the antioxidants, antihyperglycemic and anti-inflammatory properties and the resultant chemometric phytochemical profiles of unripe plantain fruits. The results revealed that Escherichia coli and Propionibacterium spp. are suspected as the key fermenters. The E coli showed negative results to the pathogenicity test; Propionibacterium appeared to be opportunistic. A significant increase in the total polyphenols and protein and decreased flavonoids was recorded in the phytochemical profile of the methanolic extract of the fermented unripe plantain pulp; however, the ascorbic acid content was not significantly altered. The 1H NMR fingerprint showed that there is a closely related chemical shift among the shorter fermentation time (days 2-6) and the unfermented, while the more extended fermentation periods (days 7-12) with enhanced bioactivities were closely related based on the chemometrics analyses. Furthermore, the UPLC-QTOF-MS analysis annotated the presence of bioactive compounds in the day-9 fermented sample: polyhydroxy glucose conjugates (3-Methoxy-4-hydroxyphenyl 6-O-(3,4,5-trihydrox- ybenzoyl)-beta-D-glucopyranoside), short chain peptide (leucyl-glycyl-glycine), amino acid derivatives (4-Aminophenylalanine, and N-Acetylhistidine), linear and cyclic fatty acid derivatives (palmitoyl putrescine, ricinoleic acid, phytosphingosine, gabalid, rubrenoic acid, 2-aminocyclopentanecarboxylic and cystodienioc acid). The synergistic effect of these newly formed compounds and the increase in the phenolic content of the day-9 fermented unripe plantain may account for its more potent antioxidant, anti-inflammatory and antihyperglycemic activity. Therefore, the products obtained from the day 9 fermentation of unripe plantain pulp may serve as potential nutraceutical agents against gastro-enteric sugar digestion and absorption and sugarinduced oxidative stress, inflammation and metabolic disease.
更多
查看译文
关键词
Antioxidants,Diabetes,Fermentation,Metabolomics,Inflammation,Unripe-plantain pulp
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要