Microfluidic platform enables shear-less aerosolization of lipid nanoparticles for messenger RNA inhalation.

bioRxiv : the preprint server for biology(2024)

引用 0|浏览5
暂无评分
摘要
Leveraging the extensive surface area of the lungs for gene therapy, inhalation route offers distinct advantages for delivery. Clinical nebulizers that employ vibrating mesh technology are the standard choice for converting liquid medicines into aerosols. However, they have limitations when it comes to delivering mRNA through inhalation, including severe damage to nanoparticles due to shearing forces. Here, we introduce a novel microfluidic aerosolization platform (MAP) that preserves the structural and physicochemical integrity of lipid nanoparticles, enabling safe and efficient mRNA delivery to the respiratory system. Our results demonstrated the superiority of the novel MAP over the conventional vibrating mesh nebulizer, as it avoided problems such as particle aggregation, loss of mRNA encapsulation, and deformation of nanoparticle morphology. Notably, aerosolized nanoparticles generated by the microfluidic device led to enhanced transfection efficiency across various cell lines. In vivo experiments with mice that inhaled these aerosolized nanoparticles revealed successful, lung-specific mRNA transfection without observable signs of toxicity. This pioneering MAP represents a significant advancement for the pulmonary gene therapy, enabling precise and effective delivery of aerosolized nanoparticles.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要