Biostable hydrogels consisting of hybrid β-sheet fibrils assembled by a pair of enantiomeric peptides

Materials Today Bio(2024)

引用 0|浏览1
暂无评分
摘要
The assembly of chiral peptides facilitates the formation of diverse supramolecular structures with unique physicochemical and biological properties. However, the effects of chirality on peptide assembly and resulting hydrogel properties remain underexplored. In this study, we systematically investigated the assembly propensity, morphology, and biostability of mixture of a pair of enantiomeric peptides LELCLALFLF (ECF-5) and DEDCDADFDF (ecf-5) at various ratios. Results indicate the development of β-sheet fibrils, ultimately leading to the formation of self-supporting hybrid hydrogels. The hydrogel formed at a ratio of 1:1 exhibits a significantly lower storage modulus (G′) than of the ratios of 0:1, 1:3, 3:1 and 1:0 (nD/nL; same below). Kink-separated fragments of approximately 100 nm in length predominate at ratios of 1:3 and 3:1, compared with the smooth fibrils at other ratios, probably attributed to an alternating arrangement of the co-assembled and self-assembled peptide fragments. The introduction of ecf-5 to the hybrid hydrogels improves resistance to proteolytic digestion and maintains commendable biocompatibility in both MIN6 and HUVECs cells. These findings provide valuable insights into the development of hydrogels with tailored properties, positing them potential scaffolds for 3D cell culture and tissue engineering.
更多
查看译文
关键词
Molecular chirality,Hydrogel,Peptide,Co-assembly
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要