Synthesis and Characterization of New Hybrid Organic-Inorganic Metal Halides [(CH3)3SO]M2I3 (M = Cu and Ag).

Inorganic chemistry(2024)

引用 0|浏览1
暂无评分
摘要
Recently, all-inorganic copper(I) metal halides have emerged as promising optical materials due to their high light emission efficiencies. This work details the crystal structure of the two hybrid organic-inorganic metal halides [(CH3)3SO]M2I3 (M = Cu and Ag) and their alloyed derivatives [(CH3)3SO]Cu2-xAgxI3 (x = 0.2; 1.25), which were obtained by incorporating trimethylsulfoxonium organic cation (CH3)3SO+ in place of Cs+ in the yellow-emitting all-inorganic CsCu2I3. These compounds are isostructural and centrosymmetric with the space group Pnma, featuring one-dimensional edge-sharing [M2I3]- anionic double chains separated by rows of (CH3)3SO+ cations. Based on density functional theory calculations, the highest occupied molecular orbitals (HOMOs) of [(CH3)3SO]M2I3 (M = Cu and Ag) are dominated by the Cu or Ag d and I p orbitals, while the lowest unoccupied molecular orbitals (LUMOs) are Cu or Ag s and I p orbitals. [(CH3)3SO]Cu2I3 single crystals exhibit a semiconductor resistivity of 9.94 × 109 Ω·cm. Furthermore, a prototype [(CH3)3SO]Cu2I3 single-crystal-based X-ray detector with a detection sensitivity of 200.54 uCGy-1 cm-2 (at electrical field E = 41.67 V/mm) was fabricated, indicating the potential use of [(CH3)3SO]Cu2I3 for radiation detection applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要