The Baade-Wesselink projection factor of RR Lyrae stars – Calibration from OHP/SOPHIE spectroscopy and Gaia DR3 parallaxes

arxiv(2024)

引用 0|浏览6
暂无评分
摘要
The application of the parallax of pulsation (PoP) technique to determine distances of pulsating stars implies the use of a scaling parameter, the projection factor (p-factor), required to transform disc-integrated radial velocities (RVs) into photospheric expansion velocities. The value of the p-factor is poorly known and debated. Most PoP applications assume a constant p-factor. However, it may actually depend on the physical parameters of each star. We aim to calibrate p-factors for RR Lyrae stars (RRLs) and compare them with classical Cepheids (CCs). Due to their higher surface gravity, RRLs have more compact atmospheres, and provide a valuable comparison with their supergiant siblings. We determined the p-factor of 17 RRLs using the SPIPS code, constrained by Gaia DR3 parallaxes, photometry, and new RVs from the OHP/SOPHIE spectrograph. We carefully examine the different steps of the PoP technique, particularly the method to determine RV from spectra using the classical cross-correlation function (CCF) approach. The method employed for RV extraction from the CCF has a strong impact on the p-factor, of up to 10 However, this choice of method results in a global scaling of the p-factor, marginally affecting the scatter within the sample for a given method. Over our RRL sample, we find a mean value of p = 1.248 ± 0.022 for RVs derived using a Gaussian fit of the CCF. There is no evidence for a different value of the p-factor of RRLs, although its distribution for RRLs appears significantly less scattered than that for CCs. The p-factor does not appear to depend in a simple way on fundamental stellar parameters. We argue that large-amplitude dynamical phenomena occurring in the atmospheres of RRLs and CCs during their pulsation affect the relative velocity of the spectral line-forming regions compared to the velocity of the photosphere.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要