Phenethylammonium bromide interlayer for high-performance red quantum-dot light emitting diodes

NANOSCALE HORIZONS(2024)

引用 0|浏览12
暂无评分
摘要
Interfacial modification is vital to boost the performance of colloidal quantum-dot light-emitting diodes (QLEDs). We introduce phenethylammonium bromide (PEABr) as an interlayer to reduce the trap states and exciton quenching at the interface between the emitting layer (EML) with CdSe/ZnS quantum-dots and the electron transport layer (ETL) with ZnMgO. The presence of PEABr separates the EML and the ETL and thus passivates the surface traps of ZnMgO. Moreover, the interfacial modification also alleviates electron injection, leading to more improved carrier injection balance. Consequently, the external quantum efficiency of the PEABr-based red QLED reached 27.6%, which outperformed those of the previously reported devices. Our results indicate that the halide ion salts are promising to balance charge carrier injection and reduce exciton quenching in the QLEDs. Phenethylammonium bromide as an interlayer showed great potential to reduce trap states, balance charge carrier injection, and thus maximize the electroluminescent efficiency of quantum-dot LED.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要